latex符号

reference

spaces in markdown

Regular space  : There's a regular space.
Two spaces gap : There's a regular space.
Four spaces gap: There's a regular space.
  • There’s a regular space.
  • There’s a regular space.
  • There’s a regular space.

Math Mode Accents

$\hat{a}$   \hat{a}$\check{a}$   \check{a}$\tilde{a}$   \tilde{a}$\acute{a}$   \acute{a}
$\grave{a}$   \grave{a}$\dot{a}$   \dot{a}$\ddot{a}$   \ddot{a}$\breve{a}$   \breve{a}
$\bar{a}$   \bar{a}$\vec{a}$   \vec{a}$\widehat{A}$   \widehat{A}$\widetilde{A}$   \widetilde{A}

Greek Letters

alpha, beta, gamma, delta, epsilon, zeta, eta, theta, iota, kappa, lambda, mu, nu, xi, omicron, pi, rho, sigma, tau, upsilon, phi, chi, psi, omega.

$\alpha$   \alpha$\beta$   \beta$\Gamma$ $\gamma$   \Gamma \gamma$\Delta$ $\delta$   \Delta \delta
$\epsilon$ $\varepsilon$   \epsilon \varepsilon$\zeta$   \zeta$\eta$   \eta$\Theta$ $\theta$ $\vartheta$   \Theta \theta \vartheta
$\iota$   \iota$\kappa$   \kappa$\Lambda$ $\lambda$   \Lambda \lambda$\mu$   \mu
$\nu$   \nu$\Xi$ $\xi$   \Xi \xi$o$   o   (omicron)$\Pi$ $\pi$ $\varpi$   \Pi \pi \varpi
$\rho$ $\varrho$   \rho \varrho$\Sigma$ $\sigma$ $\varsigma$   \Sigma \sigma \varsigma$\tau$   \tau$\Upsilon$ $\upsilon$   \Upsilon \upsilon
$\Phi$ $\phi$ $\varphi$   \Phi \phi \varphi$\chi$   \chi$\Psi$ $\psi$   \Psi \psi$\Omega$ $\omega$   \Omega \omega

Arrows

$\leftarrow$ \leftarrow or \gets$\rightarrow$ \rightarrow or \to$\leftrightarrow$ \leftrightarrow
$\Leftarrow$ \Leftarrow$\Rightarrow$ \Rightarrow$\Leftrightarrow$ \Leftrightarrow
$\longleftarrow$ \longleftarrow$\longrightarrow$ \longrightarrow$\longleftrightarrow$ \longleftrightarrow
$\Longleftarrow$ \Longleftarrow$\Longrightarrow$ \Longrightarrow$\Longleftrightarrow$ \Longleftrightarrow or \iff
$\uparrow$ \uparrow$\downarrow$ \downarrow$\updownarrow$ \updownarrow
$\Uparrow$ \Uparrow$\Downarrow$ \Downarrow$\Updownarrow$ \Updownarrow
$\mapsto$ \mapsto$\longmapsto$ \longmapsto$\multimap$ \multimap
$\hookleftarrow$ \hookleftarrow$\hookrightarrow$ \hookrightarrow$\upharpoonleft$ \upharpoonleft
$\leftharpoonup$ \leftharpoonup$\rightharpoonup$ \rightharpoonup$\upharpoonright$ \upharpoonright
$\leftharpoondown$ \leftharpoondown$\rightharpoondown$ \rightharpoondown$\downharpoonleft$ \downharpoonleft
$\leftrightharpoons$ \leftrightharpoons$\rightleftharpoons$ \rightleftharpoons$\downharpoonright$ \downharpoonright
$\leftleftarrows$ \leftleftarrows$\rightrightarrows$ \rightrightarrows$\upuparrows$ \upuparrows
$\leftrightarrows$ \leftrightarrows$\rightleftarrows$ \rightleftarrows$\downdownarrows$ \downdownarrows
$\dashleftarrow$ \dashleftarrow$\dashrightarrow$ \dashrightarrow$\nearrow$ \nearrow
$\twoheadleftarrow$ \twoheadleftarrow$\twoheadrightarrow$ \twoheadrightarrow$\searrow$ \searrow
$\leftarrowtail$ \leftarrowtail$\rightarrowtail$ \rightarrowtail$\swarrow$ \swarrow
$\Lsh$ \Lsh$\Rsh$ \Rsh$\nwarrow$ \nwarrow
$\Lleftarrow$ \Lleftarrow$\Rrightarrow$ \Rrightarrow$\rightsquigarrow$ \rightsquigarrow or \leadsto
$\looparrowleft$ \looparrowleft$\looparrowright$ \looparrowright$\leftrightsquigarrow$ \leftrightsquigarrow
$\curvearrowleft$ \curvearrowleft$\curvearrowright$ \curvearrowright
$\circlearrowleft$ \circlearrowleft$\circlearrowright$ \circlearrowright

Miscellaneous Symbols

$\dots$ \dots$\cdots$ \cdots$\vdots$ \vdots$\ddots$ \ddots
$\hbar$ \hbar$\imath$ \imath$\jmath$ \jmath$\ell$ \ell
$\Re$ \Re$\Im$ \Im$\aleph$ \aleph$\wp$ \wp
$\forall$ \forall$\exists$ \exists$\mho$ \mho$\partial$ \partial
$’$ '$\prime$ \prime$\emptyset$ \emptyset$\infty$ \infty
$\nabla$ \nabla$\triangle$ \triangle$\Box$ \Box$\Diamond$ \Diamond
$\bot$ \bot$\top$ \top$\angle$ \angle$\surd$ \surd
$\diamondsuit$ \diamondsuit$\heartsuit$ \heartsuit$\clubsuit$ \clubsuit$\spadesuit$ \spadesuit
$\neg$ \neg or \lnot$\flat$ \flat$\natural$ \natural$\sharp$ \sharp

delimiters

$($ ($)$ )$\lbrack$ [ or \lbrack$\rbrack$ ] or \rbrack
$\lbrace$ \\{ or \lbrace$\rbrace$ \\} or \rbrace$\langle$ \langle$\rangle$ \rangle
$/$ /$\backslash$ \backslash$\vert$ \vert or |$\Vert$ \Vert or \\|
$\lfloor$ \lfloor$\rfloor$ \rfloor$\lceil$ \lceil$\rceil$ \rceil

Binary Relations

$<$ <$>$ >$=$ =
$\leq$ \leq or \le$\geq$ \geq or \ge$\equiv$ \equiv
$\ll$ \ll$\gg$ \gg$\doteq$ \doteq
$\prec$ \prec$\succ$ \succ$\sim$ \sim
$\preceq$ \preceq$\succeq$ \succeq$\simeq$ \simeq
$\subset$ \subset$\supset$ \supset$\approx$ \approx
$\subseteq$ \subseteq$\supseteq$ \supseteq$\cong$ \cong
$\sqsubset$ \sqsubset$\sqsupset$ \sqsupset$\Join$ \Join
$\sqsubseteq$ \sqsubseteq$\sqsupseteq$ \sqsupseteq$\bowtie$ \bowtie
$\in$ \in$\ni$ \ni or \owns$\propto$ \propto
$\vdash$ \vdash$\dashv$ \dashv$\models$ \models
$\mid$ \mid$\parallel$ \parallel$\perp$ \perp
$\smile$ \smile$\frown$ \frown$\asymp$ \asymp
$:$ :$\notin$ \notin$\ne$ \neq or \ne

Binary Operators

$\pm$ \pm$\mp$ \mp$\triangleleft$ \triangleleft
$\cdot$ \cdot$\div$ \div$\triangleright$ \triangleright
$\times$ \times$\setminus$ \setminus$\star$ \star
$\cup$ \cup$\cap$ \cap$\ast$ \ast
$\sqcup$ \sqcup$\sqcap$ \sqcap$\circ$ \circ
$\vee$ \vee, \lor$\land$ \wedge, \land$\bullet$ \bullet
$\oplus$ \oplus$\ominus$ \ominus$\diamond$ \diamond
$\odot$ \odot$\oslash$ \oslash$\uplus$ \uplus
$\otimes$ \otimes$\bigcirc$ \bigcirc$\amalg$ \amalg
$\bigtriangleup$ \bigtriangleup$\bigtriangledown$ \bigtriangledown$\dagger$ \dagger
$\lhd$ \lhd$\rhd$ \rhd$\ddagger$ \ddagger
$\unlhd$ \unlhd$\unrhd$ \unrhd$\wr$ \wr

AMS Miscellaneous

$\hbar$ \hbar$\hslash$ \hslash$\Bbbk$ \Bbbk
$\square$ \square$\blacksquare$ \blacksquare$\circledS$ \circledS
$\vartriangle$ \vartriangle$\blacktriangle$ \blacktriangle$\complement$ \complement
$\triangledown$ \triangledown$\blacktriangledown$ \blacktriangledown$\Game$ \Game
$\lozenge$ \lozenge$\blacklozenge$ \blacklozenge$\bigstar$ \bigstar
$\angle$ \angle$\measuredangle$ \measuredangle$\sphericalangle$ \sphericalangle
$\diagup$ \diagup$\diagdown$ \diagdown$\backprime$ \backprime
$\nexists$ \nexists$\Finv$ \Finv$\varnothing$ \varnothing
$\eth$ \eth$\mho$ \mho

bold fonts

For those symbols where \mathbf is not applicable, the \boldsymbol or \pmb commands can be used.

A_\infty + \pi A_0
\sim \mathbf{A}_{\boldsymbol{\infty}} \boldsymbol{+}
\boldsymbol{\pi} \mathbf{A}_{\boldsymbol{0}}
\sim\pmb{A}_{\pmb{\infty}} \pmb{+}\pmb{\pi} \pmb{A}_{\pmb{0}}
$$ A_\infty + \pi A_0 \sim \mathbf{A}_{\boldsymbol{\infty}} \boldsymbol{+} \boldsymbol{\pi} \mathbf{A}_{\boldsymbol{0}} \sim\pmb{A}_{\pmb{\infty}} \pmb{+}\pmb{\pi} \pmb{A}_{\pmb{0}} $$